السبت، 28 مارس 2015

حل معادلة الدرجة الاولى في مجهول واحد ( المعادلة البسيطة)


عزيزى الطالب سنتعرف في هذا الدرس على كيفية حل معادلة الدرجة الاولى فى مجهول واحد ، , و تسمى ابضا بالمعادلة البسيطة نظرا لانها ابسط انواع المعادلات.

لو نظرنا الى المثال الاتى :

س + 4 = 7 يمكن ترجمة هذه المعادلة الى السؤال التالي:
ما هو العدد المجهول الذي اذا اضيف الى العدد 4 كان الناتج 7 ?
اعتقد انك ستتوصل الى الاجابة بسرعة ... نعم ... العدد هو 3 ( لاحظ ان المجهول هنا هو الرمز س).
حسنا ... سأعطيك مثال اخر و هو : 3س =15

انت تعلم عزيزى الطالب ان 3س تعنى ان العدد 3 مضروب فى الرمز س كما درست فى باب الحدود الجبرية، و بذلك يمكننا ان نترجم المعادلة الى السؤال التالي :
ما هو العدد المجهول الذي اذا ضربناه فى العدد 3 كان الناتج هو العدد 15 ?
طبعا ستكون اجابتك هي العدد 5 .

و لكن ....الموضوع لن يسير بهذه البساطة دائما....
ما رأيك ان نجعل السؤال اصعب بعض الشىء ? و نكتب هذا المثال:
ما هو حل المعادلة 6 س +39 = -9 ?

و هذه المعادلة تعني ما هو العدد الذي اذا ضرب في العدد 6 و اضيف الناتج الى العدد 39 كان الناتج -9 ؟

اعتقد ان اجابتك ستستغرق بعض الوقت؟
لذلك كان لا بد من وضع طرق محددة نستخدمها لحل المعادلات هذه الطرق تسمى الطرق الجبرية ، بها نستطيع ان نحل اي معادلة من الدرجة الاولى ايا كانت مدى صعوبتها.
ما رايك ان نقوم الان بشرح طرق حل معادلة الدرجة الاولى فى مجهول واحد ? و فى نهاية الدرس نحل معا المعادلة السابقة.
حل معادلة الدرجة الاولى باستخدام الاضافة:
و نستخدم هذه الطريقة عندما نريد التخلص من العدد المجموع أو المطروح من المجهول و ذلك باضافة المعكوس الجمعي لهذا العدد الى طرفي المعادلة .

ملحوظة هامة:

عند حل اي معادلة بسيطة نبحث عن مكان المجهول فيها ، بمعنى الطرف الذي يوجد به س هل هو الطرف الايمن ام الطرف الايسر و نحاول ان نتخلص من الاعداد الموجودة فى هذذا الطرف.

مثلا:
لحل المعادلة س +4 =7 نتبع الاتى:
نتخلص من العدد الموجود مع المجهول (س) فى الطرف الايمن و هو هنا العدد 4
اذا س +4 -4 =7 -4 باضافة المعكوس الجمعى للعدد 4 للطرفين
اذا س + 0 = 3
اذا س=3
اذا مجموعة الحل = {3}
مثال:
حل المعادلة س -2 = 7
الحل
بما ان س - 2= 7
اذا س = 7 + 2 باضافة المعكوس الجمعى للعدد -2 للطرفين
اذا س = 9

ليست هناك تعليقات:

إرسال تعليق